[bookmark: morse-code-simulation]Morse Code Simulation
This project simulates Morse Code transmission and decoding. It processes binary input signals (. and -) in real-time, classifies them based on duration, and decodes them into corresponding alphanumeric and symbolic characters.
[bookmark: overview]Overview
The system reads signal transitions (high/low) from a GPIO interface, calculates their durations, and interprets them as Morse symbols (dots, dashes, or spacing). These symbols are accumulated into a sequence and translated using a pre-defined Morse Code dictionary.
[bookmark: features]Features
· Morse Code Translation: Converts Morse Code signals: dots(.), dashes(-), and spaces() into letters, numbers, and punctuation.
· Speed Settings: Supports three speed modes (Fast, Normal, Slow) with configurable thresholds for distinguishing between dots, dashes, letter gaps, and word gaps.
· Signal Interpretation: Processes binary signals (high/low) based on their duration to determine Morse Code symbols.
· Dynamic Updates: Allows real-time updates to speed settings and clearing of the current buffer.
· Symbol Dictionary: Includes a full lookup table for alphabetic characters, numeric digits, and common punctuation symbols.
[bookmark: speed-settings]Speed Settings
The simulation supports three speed modes: - Fast (F): - Dot: 0.1 seconds - Dash: 0.3 seconds - Letter Space: 0.1 seconds - Word Space: 0.3 seconds - Normal (N) (default): - Dot: 1.0 seconds - Dash: 1.5 seconds - Letter Space: 1.0 seconds - Word Space: 2.0 seconds - Slow (S): - Dot: 3.0 seconds - Dash: 5.0 seconds - Letter Space: 3.0 seconds - Word Space: 5.0 seconds
[bookmark: morse-code-dictionary]Morse Code Dictionary
The dictionary includes mappings for: - Letters: A-Z - Numbers: 0-9 - Punctuation: . , ? ' ! / () & : ; = + - _ " $ @
[bookmark: signal-processing]Signal Processing
The simulation tracks high and low signals using timestamps and interprets their duration to determine the corresponding Morse Code symbol. It supports: - Dots (.): Short high signals. - Dashes (-): Long high signals. - Letter Spaces (/): Short low signals. - Word Spaces (): Long low signals.
[bookmark: how-it-works]How It Works
1. Initialization:
· The simulation initializes the Morse Code dictionary and sets default speed thresholds.
1. Signal Processing:
· Signals are read from the target device’s GPIO pin (morseSignal).
· The duration of each signal is measured and interpreted as a dot, dash, or space.
1. Translation:
· Morse Code sequences are translated into human-readable text using the dictionary.
1. Dynamic Updates:
· Users can change speed settings or clear the current buffer in real-time.
[bookmark: example-usage]Example Usage
[bookmark: input-signals]Input Signals
· High signal (1) for 0.1 seconds → Dot (.)
· High signal (1) for 0.3 seconds → Dash (-)
· Low signal (0) for 1.0 seconds → Letter Space (/)
· Low signal (0) for 2.0 seconds → Word Space ()
[bookmark: output]Output
· Input: .-- --- .-. -.. / - -
· Output: WORD TEST
